
Ordered phase AB diffusive growth

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 L853

(http://iopscience.iop.org/0305-4470/24/15/011)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 11:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 24 (1991) L853-L857. Printed in the UK 

LEVER TO THE EDITOR 

Ordered phase AB diffusive growth 

V B Sapozhnikov and M G Goldiner 
Centre of Scientific Research, Investigation, Automation and Metrology, Moldavian 
Academy of Sciences, Crasul SIT. 312, Kishinev 277028. USSR 

Received 2 April 1991 

Abstract. Ordered phase AB formation and diffusive growth and its boundary evolution 
on a square lattice are investigated by computer simulation. It is found that the boundary 
is a self-similar fractal ( D = 7 / 4 )  and its width and length grow as a power low with 
exponents 113 and 114, correspondingly. The phase is found to exist over the 0.31-0.69 
concentration range. I t  is shown that a phase formed via a second order-phase transition 
may have a boundary if the physical properties of the system have a gradient. 

In the present work we simulated ordered phase formation and diffusive growth in a 
two-dimensional system consisting of atoms A and B which have negative mixing 
energy (this is taken to correspond to attraction of different-type atoms) so that it is 
thermodynamically justified for the system to be ordered into phase AB. In contrast 
to the traditional treatment of problems on phase diffusive growth which considers 
the boundary to remain smooth in the course of the diffusion, such an approach allows 
investigation of the geometry and the laws governing the evolution of the boundary 
upon interdiffusion. 

Previously we investigated boundary evolution upon interdiffusion. In [ I ,  21 we 
investigated the evolution of a diffusion couple consisting of components which have 
zero mixing energy and which therefore form an ideal solution. We found that the 
diffusion front thus formed has a fractal geometry and that its evolution is characterized 
by some critical exponents. We also investigated another case [3] where the mixing 
energy is great enough so that it is thermodynamically justified for the system to be 
separated into two phases by a boundary. We showed that the boundary is a self-affine 
fractal and that its evolution is consistent with the predictions the linear version of 
the Langevin equation, quite different from the diffusion front in an ideal solution. 

In recent years surfaces of aggregates formed by other stochastic processes, such 
as deposition and growth, were investigated both by computer simulation and by 
theoretical methods (see, for example, references in [4]). As was first shown by Family 
and Vicsek [5], for such aggregates the dependence of the surface width on time and 
on substrate size can be written in a double scaling form. Edwards et al [ 6 ]  derived 
a linear equation of Langevin type for such surface growth. Later, Kardar er al 
generalized this equation by inserting a nonlinear term. 

However, the results of this work are quite different both from the predictions of 
the Langevin equation and from the results of our work [3] where the positive mixing 
energy case was studied. 

The atoms were placed on a square lattice having N, x N, sites. Originally the 
atoms formed two pure phases A and B separated by a straight line joining the middle 
points of the lattice boundaries. These two boundaries were ‘joined’ (periodic boundary 
conditions) while the other two were made reflecting. 
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Avacancy moved over the lattice and jumped each time to one of the four neighbour 
sites thus carrying out the interdiffusion. The activation energy of the vacancy jump 
was taken to be E = E0+ne/2, where n is the change in the number of heterogeneous 
bounds in the sample as a result of the jump and E = eAB - 0 . 5 ( ~ ~ ~ +  E ~ ~ )  is the mixing 
energy of the atoms A and B are the binding energies for the 
corresponding atom pairs). Then the difference between the activation energies of the 
direct jump and the reverse one is just nu. It means that relative probability of a 
diffusion jump to a given site is proportional to exp(-nu/2) where U = E/kT is the 
reduced mixing energy. The simulation was performed at U = --1 and U = -2. 

In the course of the interdiffusion, the ordered phase AB formed having a square 
unit cell with two A atoms on  one diagonal and two B atoms on the other. At first 
stage ordered phase clusters were formed along the original boundary between atoms 
A and B (figure l (a))  which then coalesced into one cluster. We shall call i t  the main' 
cluster in contrast to the class of clusters formed in an outlying area. The main cluster 
consisted of antiphase domains of two types depending on which of the two sublattices 
was occupied by A or B atoms (figure l ( b ) ) .  Interdomain wall migration will be studied 
in detail in a further work; here we only note that the domains coalesced into one 
after the phase spread over the whole sample. 

The ordered phase, ignoring domain type difference and the main cluster boundary, 
are shown in figure 2. We studied the growth kinetics for the total phase width (the 
totai number oi  phase atoms normaiizea on Ny j and for the boundary iength ana  
width (doubled mean square deviation from the central position). The results for 
256 x 128 sample at U = 1 are shown in figure 3 from the moment when the main cluster 
is formed. The values under study exhibit scaling; the exponents are: for the total 

and 

Figure 1. Ordered phase after diffusion on a 6 4 x  128 lattice at U = I after ( U )  IO" and 
( b )  10' vacancy jumps. The domains are indicated ~ r e y  and black. 
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Figure 2. Ordered phase (grey) and the boundaries of  i ts  main cluster (black) on 64x  128 
lattice after 10' vacancy jumps at U = -1. The domains are not indicated. T h e  marks show 
the boundary mean widths, 
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Figure 3. Boundary evolution on a 256x 128 lattice at U = -1. 

phase width pw = 0.50-tO.01, for the boundary width p = 0.33 ztO.01 an r the boun- 
dary length pN=0.24*0.01. This allows the assumption that exact values for the 
exponents are: ph, = 112, p = 113 and pN = 1 f4. The same results were obtained for 
U = -2. 

We also studied the geometry of the ordered phase main cluster boundary. It 
appeared to be a self-similar fractal. We determined the value of its fractal dimension 
from the dependence of the number of atoms in the box against the linear size of the 
box. Due to flnite size effects the fractal dimension rose in the course of diffusion; it 
was equal to D = 1.60 after 10' vacancy jumps. However, we can remove finite size 
effects. From the relationship p N  = ( D  - 1)p [ 1,2] we get D = 7/4 equal to the fractal 
dimension of the percolation cluster external boundary [8]. 

A self-similar fractal is essentially a multivalued function of any Cartesian coordin- 
ate. Hence although the value of the exponent p = 113 corresponds to the prediction 
of the nonlinear version of the Langevin equation [7], the latter is hardly applicable 
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to the description of the AB phase boundary evolution because it supposes the boundary 
to be a single-valued function of the coordinates. 

From the equation cb = (11 N )  Z:~, c;(A)n,, a mean concentration of A atoms 
corresponding to the boundary position was found. Here q ( A )  and n, are concentration 
of A atoms and number of boundary atoms in the ith layer, and N is total number 
of the boundary atoms. In course of phase growth the concentration appeared to 
remain constant and equal to cb=0.31 *0.01 for one boundary and, correspondingly, 
0.69 * 0.01 for the other, both for U = -1  and U = -2. So, the phase exists at the 0.31-0.69 
concentration range. 

In contrast to the case of positive mixing energy, when phases A and B available 
are stable and therefore the boundary thickness saturates to a constant value [3], in 
the case under study the boundaries grew until they reached the lattice edge. To 
establish whether the boundaries are stable or not we simulated diffusion in a system 
consisting originally of the phase AB and the pure component A for mixing energies 
from U = -1 to U = -6. At any (negative) energy the phase AB appeared to dissolve 
an unlimited quantity of the pure component (however, the phase becomes disordered 
if its concentration falls out of the range mentioned above). Hence (i) there is no 
concentration step on the phase AB boundary and (ii) the boundary is unstable. The 
absence of the concentration step on the boundary means that a second-order phase 
transition takes place in the regions adding to the phase AB (ordering). The energy 
of such a boundary is zero. Tnerefore, in conirasi io ihe boundary of phases A and a  ̂
[3], the boundary under study is a self-similar fractal rather than a self-affine fractal. 

It seems to be appropriate to discuss here the problem of applicability of boundary 
concept to phase growing via a second-order phase transition. Indeed, while at first- 
order phase transitions, regions having physical property steps on their boundaries are 
formed, at second-order phase transitions an infinitesimal new property normally arises 
simultaneously in the whole volume, so that one cannot speak about a boundary in 
this case. However, the latter argument is valid only for systems having uniform physical 
characteristics. For instance, if the system temperature bas a gradient, a paramagnetic- 
ferromagnetic transition cannot take place in the whole volume simultaneously. Hence, 
a boundary must occur between the paramagnetic and the ferromagnetic regions. The 
phase AB boundary formed under a concentration gradient is of a similar nature. 

phase growing via a second-order phase transition may have a boundary if the physical 
properties of the system have a gradient; as a result of interdiffusion of atoms A and 
B having negative mixing energy, an ordered phase AB forms in the diffusion zone 
which exists over the 0.31-0.69 concentration range; in contrast to the positive mixing 
energy case [3] the phase boundary is a self-similar fractal having the same fractal 
dimension ( D = 7 / 4 )  as the diffusion front formed at zero mixing energy [1:2]; in 
contrast to both the zero [ l ,  21 and positive [3] mixing energy cases the boundary 
width and length grow as a power law with exponents 1/3  and 1/4, respectively; there 
is no concentration step on the AB phase boundary and the boundary is unstable. 

The f.reg&g sim.!.tion .fia!ysis give rise to the fo!!owifig conc!usifins; 8 
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